Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Functional analysis of the Na+,K+/H+ antiporter PeNHX3 from the tree halophyte Populus euphratica in yeast by model-guided mutagenesis.

Identifieur interne : 002221 ( Main/Exploration ); précédent : 002220; suivant : 002222

Functional analysis of the Na+,K+/H+ antiporter PeNHX3 from the tree halophyte Populus euphratica in yeast by model-guided mutagenesis.

Auteurs : Liguang Wang [République populaire de Chine] ; Xueying Feng [République populaire de Chine] ; Hong Zhao [République populaire de Chine] ; Lidong Wang [République populaire de Chine] ; Lizhe An [République populaire de Chine] ; Quan-Sheng Qiu [République populaire de Chine]

Source :

RBID : pubmed:25093858

Descripteurs français

English descriptors

Abstract

Na+,K+/H+ antiporters are H+-coupled cotransporters that are crucial for cellular homeostasis. Populus euphratica, a well-known tree halophyte, contains six Na+/H+ antiporter genes (PeNHX1-6) that have been shown to function in salt tolerance. However, the catalytic mechanisms governing their ion transport remain largely unknown. Using the crystal structure of the Na+/H+ antiporter from the Escherichia coli (EcNhaA) as a template, we built the three-dimensional structure of PeNHX3 from P. euphratica. The PeNHX3 model displays the typical TM4-TM11 assembly that is critical for ion binding and translocation. The PeNHX3 structure follows the 'positive-inside' rule and exhibits a typical physicochemical property of the transporter proteins. Four conserved residues, including Tyr149, Asn187, Asp188, and Arg356, are indentified in the TM4-TM11 assembly region of PeNHX3. Mutagenesis analysis showed that these reserved residues were essential for the function of PeNHX3: Asn187 and Asp188 (forming a ND motif) controlled ion binding and translocation, and Tyr149 and Arg356 compensated helix dipoles in the TM4-TM11 assembly. PeNHX3 mediated Na+, K+ and Li+ transport in a yeast growth assay. Domain-switch analysis shows that TM11 is crucial to Li+ transport. The novel features of PeNHX3 in ion binding and translocation are discussed.

DOI: 10.1371/journal.pone.0104147
PubMed: 25093858
PubMed Central: PMC4122410


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Functional analysis of the Na+,K+/H+ antiporter PeNHX3 from the tree halophyte Populus euphratica in yeast by model-guided mutagenesis.</title>
<author>
<name sortKey="Wang, Liguang" sort="Wang, Liguang" uniqKey="Wang L" first="Liguang" last="Wang">Liguang Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu</wicri:regionArea>
<wicri:noRegion>Gansu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Feng, Xueying" sort="Feng, Xueying" uniqKey="Feng X" first="Xueying" last="Feng">Xueying Feng</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu</wicri:regionArea>
<wicri:noRegion>Gansu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Hong" sort="Zhao, Hong" uniqKey="Zhao H" first="Hong" last="Zhao">Hong Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu</wicri:regionArea>
<wicri:noRegion>Gansu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Lidong" sort="Wang, Lidong" uniqKey="Wang L" first="Lidong" last="Wang">Lidong Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu</wicri:regionArea>
<wicri:noRegion>Gansu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="An, Lizhe" sort="An, Lizhe" uniqKey="An L" first="Lizhe" last="An">Lizhe An</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu</wicri:regionArea>
<wicri:noRegion>Gansu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Quan Sheng" sort="Qiu, Quan Sheng" uniqKey="Qiu Q" first="Quan-Sheng" last="Qiu">Quan-Sheng Qiu</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu</wicri:regionArea>
<wicri:noRegion>Gansu</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25093858</idno>
<idno type="pmid">25093858</idno>
<idno type="doi">10.1371/journal.pone.0104147</idno>
<idno type="pmc">PMC4122410</idno>
<idno type="wicri:Area/Main/Corpus">002052</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002052</idno>
<idno type="wicri:Area/Main/Curation">002052</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002052</idno>
<idno type="wicri:Area/Main/Exploration">002052</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Functional analysis of the Na+,K+/H+ antiporter PeNHX3 from the tree halophyte Populus euphratica in yeast by model-guided mutagenesis.</title>
<author>
<name sortKey="Wang, Liguang" sort="Wang, Liguang" uniqKey="Wang L" first="Liguang" last="Wang">Liguang Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu</wicri:regionArea>
<wicri:noRegion>Gansu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Feng, Xueying" sort="Feng, Xueying" uniqKey="Feng X" first="Xueying" last="Feng">Xueying Feng</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu</wicri:regionArea>
<wicri:noRegion>Gansu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Hong" sort="Zhao, Hong" uniqKey="Zhao H" first="Hong" last="Zhao">Hong Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu</wicri:regionArea>
<wicri:noRegion>Gansu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Lidong" sort="Wang, Lidong" uniqKey="Wang L" first="Lidong" last="Wang">Lidong Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu</wicri:regionArea>
<wicri:noRegion>Gansu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="An, Lizhe" sort="An, Lizhe" uniqKey="An L" first="Lizhe" last="An">Lizhe An</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu</wicri:regionArea>
<wicri:noRegion>Gansu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Quan Sheng" sort="Qiu, Quan Sheng" uniqKey="Qiu Q" first="Quan-Sheng" last="Qiu">Quan-Sheng Qiu</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu</wicri:regionArea>
<wicri:noRegion>Gansu</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Biological Transport (MeSH)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Escherichia coli (metabolism)</term>
<term>Escherichia coli Proteins (chemistry)</term>
<term>Hydrophobic and Hydrophilic Interactions (MeSH)</term>
<term>Lithium (metabolism)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutagenesis (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Populus (metabolism)</term>
<term>Potassium (metabolism)</term>
<term>Protein Structure, Secondary (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Salt-Tolerant Plants (metabolism)</term>
<term>Sodium (metabolism)</term>
<term>Sodium-Hydrogen Exchangers (chemistry)</term>
<term>Sodium-Hydrogen Exchangers (metabolism)</term>
<term>Structure-Activity Relationship (MeSH)</term>
<term>Trees (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antiport des ions sodium-hydrogène (composition chimique)</term>
<term>Antiport des ions sodium-hydrogène (métabolisme)</term>
<term>Arbres (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Interactions hydrophobes et hydrophiles (MeSH)</term>
<term>Lithium (métabolisme)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Motifs d'acides aminés (MeSH)</term>
<term>Mutagenèse (MeSH)</term>
<term>Plantes tolérantes au sel (métabolisme)</term>
<term>Populus (métabolisme)</term>
<term>Potassium (métabolisme)</term>
<term>Protéines Escherichia coli (composition chimique)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Relation structure-activité (MeSH)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sodium (métabolisme)</term>
<term>Structure secondaire des protéines (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Transport biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Escherichia coli Proteins</term>
<term>Plant Proteins</term>
<term>Sodium-Hydrogen Exchangers</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Antiport des ions sodium-hydrogène</term>
<term>Protéines Escherichia coli</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
<term>Lithium</term>
<term>Populus</term>
<term>Potassium</term>
<term>Saccharomyces cerevisiae</term>
<term>Salt-Tolerant Plants</term>
<term>Sodium</term>
<term>Sodium-Hydrogen Exchangers</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antiport des ions sodium-hydrogène</term>
<term>Arbres</term>
<term>Escherichia coli</term>
<term>Lithium</term>
<term>Plantes tolérantes au sel</term>
<term>Populus</term>
<term>Potassium</term>
<term>Saccharomyces cerevisiae</term>
<term>Sodium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Biological Transport</term>
<term>Conserved Sequence</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis</term>
<term>Protein Structure, Secondary</term>
<term>Protein Structure, Tertiary</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Interactions hydrophobes et hydrophiles</term>
<term>Modèles moléculaires</term>
<term>Motifs d'acides aminés</term>
<term>Mutagenèse</term>
<term>Relation structure-activité</term>
<term>Structure secondaire des protéines</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence conservée</term>
<term>Séquence d'acides aminés</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Na+,K+/H+ antiporters are H+-coupled cotransporters that are crucial for cellular homeostasis. Populus euphratica, a well-known tree halophyte, contains six Na+/H+ antiporter genes (PeNHX1-6) that have been shown to function in salt tolerance. However, the catalytic mechanisms governing their ion transport remain largely unknown. Using the crystal structure of the Na+/H+ antiporter from the Escherichia coli (EcNhaA) as a template, we built the three-dimensional structure of PeNHX3 from P. euphratica. The PeNHX3 model displays the typical TM4-TM11 assembly that is critical for ion binding and translocation. The PeNHX3 structure follows the 'positive-inside' rule and exhibits a typical physicochemical property of the transporter proteins. Four conserved residues, including Tyr149, Asn187, Asp188, and Arg356, are indentified in the TM4-TM11 assembly region of PeNHX3. Mutagenesis analysis showed that these reserved residues were essential for the function of PeNHX3: Asn187 and Asp188 (forming a ND motif) controlled ion binding and translocation, and Tyr149 and Arg356 compensated helix dipoles in the TM4-TM11 assembly. PeNHX3 mediated Na+, K+ and Li+ transport in a yeast growth assay. Domain-switch analysis shows that TM11 is crucial to Li+ transport. The novel features of PeNHX3 in ion binding and translocation are discussed. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25093858</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Functional analysis of the Na+,K+/H+ antiporter PeNHX3 from the tree halophyte Populus euphratica in yeast by model-guided mutagenesis.</ArticleTitle>
<Pagination>
<MedlinePgn>e104147</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0104147</ELocationID>
<Abstract>
<AbstractText>Na+,K+/H+ antiporters are H+-coupled cotransporters that are crucial for cellular homeostasis. Populus euphratica, a well-known tree halophyte, contains six Na+/H+ antiporter genes (PeNHX1-6) that have been shown to function in salt tolerance. However, the catalytic mechanisms governing their ion transport remain largely unknown. Using the crystal structure of the Na+/H+ antiporter from the Escherichia coli (EcNhaA) as a template, we built the three-dimensional structure of PeNHX3 from P. euphratica. The PeNHX3 model displays the typical TM4-TM11 assembly that is critical for ion binding and translocation. The PeNHX3 structure follows the 'positive-inside' rule and exhibits a typical physicochemical property of the transporter proteins. Four conserved residues, including Tyr149, Asn187, Asp188, and Arg356, are indentified in the TM4-TM11 assembly region of PeNHX3. Mutagenesis analysis showed that these reserved residues were essential for the function of PeNHX3: Asn187 and Asp188 (forming a ND motif) controlled ion binding and translocation, and Tyr149 and Arg356 compensated helix dipoles in the TM4-TM11 assembly. PeNHX3 mediated Na+, K+ and Li+ transport in a yeast growth assay. Domain-switch analysis shows that TM11 is crucial to Li+ transport. The novel features of PeNHX3 in ion binding and translocation are discussed. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Liguang</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Xueying</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Lidong</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>An</LastName>
<ForeName>Lizhe</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qiu</LastName>
<ForeName>Quan-Sheng</ForeName>
<Initials>QS</Initials>
<AffiliationInfo>
<Affiliation>MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C102839">NhaA protein, E coli</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017923">Sodium-Hydrogen Exchangers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9FN79X2M3F</RegistryNumber>
<NameOfSubstance UI="D008094">Lithium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9NEZ333N27</RegistryNumber>
<NameOfSubstance UI="D012964">Sodium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RWP5GA015D</RegistryNumber>
<NameOfSubstance UI="D011188">Potassium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>PLoS One. 2015;10(2):e0117869</RefSource>
<PMID Version="1">25646763</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="N">Escherichia coli Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057927" MajorTopicYN="N">Hydrophobic and Hydrophilic Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008094" MajorTopicYN="N">Lithium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016296" MajorTopicYN="Y">Mutagenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011188" MajorTopicYN="N">Potassium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055051" MajorTopicYN="N">Salt-Tolerant Plants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012964" MajorTopicYN="N">Sodium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017923" MajorTopicYN="N">Sodium-Hydrogen Exchangers</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>03</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>07</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25093858</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0104147</ArticleId>
<ArticleId IdType="pii">PONE-D-14-12747</ArticleId>
<ArticleId IdType="pmc">PMC4122410</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Genet Genomics. 2012 Apr 20;39(4):167-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22546538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:651-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2003 Jan;21(1):81-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12469134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Mar;46(3):407-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15695444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(5):1181-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16513813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1989 Jul 28;58(2):409-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2546682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2001 May 1;1505(1):144-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11248196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Oct;137(2):166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19678897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1986 Nov;5(11):3021-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16453726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008 Jul;179(2):366-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19086176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 2;279(1):207-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14570921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 7;275(1):1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Feb;16(2):435-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14742879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2001 Aug;19(8):765-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11479571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4277-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Sep;1804(9):1695-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20433957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Jun;30(5):529-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12047628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Mar 12;396(5):1181-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20053353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 Apr 24;363(3):264-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7737413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jan;23(1):224-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21278129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:247-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6896-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10823923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Sep;23(9):3482-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21954467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):16107-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16249341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Oct 1;123(Pt 19):3266-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20826459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Jan;55(2):588-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8436-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12034882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2012 Feb;54(2):66-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22222113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Dec 22;20(6):811-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16364908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Oct;36(2):229-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14535887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2611-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21262798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24288371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1998 Apr;7(4):1029-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9568909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Oct;63(16):5727-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22991159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Mar;24(3):1127-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22438021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Dec 28;282(52):37854-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17981808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jan 25;277(4):2413-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11707435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2009 Jun;212(Pt 11):1593-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19448069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Apr;8(4):617-627</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12239394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Oct 28;286(43):37625-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21896492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jun 29;310(1):243-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11419950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Oct 5;407(6804):581</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11034195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Oct 15;21(20):3540-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20719963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Aug 20;285(5431):1256-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10455050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2005 Mar;16(3):1396-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15635088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1997 Dec;18(15):2714-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9504803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Feb 1;401(3):623-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17209804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Dec;154(4):1697-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20959419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Feb 1;61(3):495-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19912566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):1041-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W284-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Jan;2(1):1-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19529825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2000 Aug;12(4):431-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1718-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Apr 14;471(2-3):224-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10767428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Sep;17(9):849-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11590105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):1141-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19028881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1762-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 30;435(7046):1197-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15988517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2003 Apr;91(5):503-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12646496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2005 Feb;288(2):C223-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15643048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Sep 30;286(39):33931-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21795714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 6;279(6):4498-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14610088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2797</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24256998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Aug;61(13):3787-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20595237</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Liguang" sort="Wang, Liguang" uniqKey="Wang L" first="Liguang" last="Wang">Liguang Wang</name>
</noRegion>
<name sortKey="An, Lizhe" sort="An, Lizhe" uniqKey="An L" first="Lizhe" last="An">Lizhe An</name>
<name sortKey="Feng, Xueying" sort="Feng, Xueying" uniqKey="Feng X" first="Xueying" last="Feng">Xueying Feng</name>
<name sortKey="Qiu, Quan Sheng" sort="Qiu, Quan Sheng" uniqKey="Qiu Q" first="Quan-Sheng" last="Qiu">Quan-Sheng Qiu</name>
<name sortKey="Wang, Lidong" sort="Wang, Lidong" uniqKey="Wang L" first="Lidong" last="Wang">Lidong Wang</name>
<name sortKey="Zhao, Hong" sort="Zhao, Hong" uniqKey="Zhao H" first="Hong" last="Zhao">Hong Zhao</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002221 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002221 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25093858
   |texte=   Functional analysis of the Na+,K+/H+ antiporter PeNHX3 from the tree halophyte Populus euphratica in yeast by model-guided mutagenesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25093858" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020